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Note 

Application of Generalized Pad6 Approximants 
to the Special Function Evaluation Problem 

A new approach to generalized Pad& approximants is presented. Its main interest lies in the 
fact that it avoids instability and/or round-off errors which occur in traditional algorithms for 
evaluating Pade approximants. Moreover, the approximants are readily obtained. Applications 
concerned with the tabulation of some transcendental functions in their critical domain 
(Weber and Bessel functions) illustrate the power of the method. 

I. I~JTR~DuCTI~N 

Theoretical physicists are often confronted with the problem of poor convergence. 
A possible key to that problem is furnished by the theory of the acceleration of 
convergence [ 1 ] ; consider the slowly convergent sequence 

s, = s + O(n). 

It is possible to find an algorithm which replaces the sequence (S,) by another 
sequence (Z,) which converges faster than (S,). There are many such algorithms 
available; however, their applicability is closely dependent on the form of the original 
sequence. The best known are the algorithms E [2], p, and 13 [ 11. A more general 
algorithm has been found recently by Havie [3] and Brezinski [4] (E-algorithm). 

Physicists almost always have recourse to Pad& approximants [5] which are 
intimately correlated with the s-algorithm. Note that this algorithm is most efficient 
when the original sequence (S,) is exponentially convergent (or divergent), i.e., if 
O(n) N_ @” but performs poorly otherwise. 

In this paper, we shall develop a new approach to Pad& approximants which will 
exhibit several advantageous features: compactness, stability, and rapid convergence. 

II. VARIATIONS ON A THEME OF PADS 

1. Theme 
Suppose that we need to tabulate the function f(r) defined by its MacLaurin 

expansion 

f(z)=c,+c,z+c,z2+ -a*. (1) 
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478 ANDRh HAUTOT 

The classical theory of Pade defines approximants [L/M] given by 

[L/M]=(a,+a,z+ **a +a,zL)/(b,+b,z+ *** +b,z”) 

with the following properties [5]: 

(a) b,= 1, 
(b) the MacLaurin expansion of [L/M] coincides with that of f(z) up to an 

including order z~+~. 

Even when (1) is divergent, it is known that suitable sequences [L/M] may 
converge to the value off(z). 

Various methods have been proposed to evaluate the successive approximants 
[L/M]. Recurrent algorithms have been found, but the drawback of possible round- 
off errors and/or instability exists. The problem has been discussed recently by 
Graves-Morris [6]. 

2. First Variation 

It is possible to express the special Pad& approximant [s - l/s] in a different way 

f(Z) N [S - l/S] = i A,/( l - wiz). 
i=l 

The idea naturally arises to generalize this approximant by considering the expansion 

f(z) * ,$, J-iF(oiZ)T (2) 

where the function F is given. General properties of such generalized approximants 
have been studied by Baker and Gammel [ 171. In practical applications, however, the 
most widely used examples are F(z) = I/( 1 - z) (ordinary Pade approximants) and 
F(z) = exp(-z) (exponential interpolation [7]). Our aim is to try a more systematic 
use of the other cases. 

We shall first study the general case where the function F(z) is defined by its 
MacLaurin expansion 

The starting equation is 

F(z)=a,+a,z+a,z*+.... 

written as 

m 
T ckzk = i liF(oiz) = 2 akzk i &CO:. 

i=l 0 i=l 

(3) 

The coefficients of the lowest powers of z can be identified up to and including order 
2s - 1. This leads to the following nonlinear system for the 2s unknowns A, and wi: 
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where yk = ck /ak. A quite similar system appears in the theory of Gaussian 
quadratures [8]. Its solution is obtained by first eliminating the Izi. One finds 

ys = y,-IA, - ys-*A2 + .a. + (-l)S+‘yoA,, 

Ys+1 =Ys A, -us-,A, + ..a + (-l)S+‘y,A,, (5) 

where the A, are the fundamental symmetrical polynomials acting on the wi 

Al=~wi, A,= C CwiWj 3 a+.) A, = n wi. 
I i<j i 

Solving system (5) leads to the values of A, ,..., A,. The oi are then found as the roots 
of the polynomial equation 

zs - A1sS-’ + A*z+~ + a.. + (-l)SA, = 0. 

Finally, the li are deduced from the first s equations of system (4). That approach 
is not very effkient in practice because it needs the resolution of two linear systems 
of order s. 

Fortunately, an alternative exists, the recurent computation of the wi and of the iii. 
Hence, system (4) exactly describes the [S - l/s] PadC approximant of the function 
Cp yk/zkt ‘. In greater detail [9] 

Yo = 

Z-Uo- 
b, 

4 
z - a1 - ------ 

z-al- 

b s-1 - 
Z-Us-, 
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The coefficients ak and b, in the continued fraction are calculated with the aid of the 
q - d algorithm of Rutishauser (see Appendix A). Polynomials Q,(Z) and P,(z) are of 
degree s and s - 1, respectively. They are calculated recursively through the scheme 

X ktl=(z--k)Xk-bkXk-lT (k = 0, 1, 2 )... ), (‘5) 

together with the initial conditions 

Q-,=0, Q, = 1, p-1 = Yo, PO = 0 (and b, = -1). 

The wi are the roots of Q,(Z), while the J,, are known as the Christoffel constants [lo] 

Ai = Ps(OiYQi(W,)* (7) 

In summary, the strategy is as follows: 

(1) In Eqs. (l), (3), the ck and the ak are given. We fix s, a positive integer. We 
define yk = c,Jak (k = 0, l,..., 2s - 1). 

(2) The q -d algorithm is applied to the sequence (y,J in order to find the ak 
and the b, (k = 0, l,..., s - 1) (see Appendix A). 

(3) The polynomials Q,(z) and Pk(z) are calculated recursively (k = l,..., s) 
with the aid of Eq. (6). 

(4) The roots of Q,(z) are the desired oi and Eq. (7) leads to the 
corresponding li . 

(5) Those li and wi are introduced in Eq. (2) to obtain the approximation of 
order s. Increasing s theoretically improves the precision. 

One may say about the above strategy that the algorithm works effectively. It 
solves the classical problem of expanding f(z) in the form of an [s - l/s] Pade 
approximant (i.e., yk = c,J or as a sum of exponentials (Le., yk = (-l)‘(k!c,). The 
advantage is that f(z) is expanded in terms of known functions F(z). The sole 
drawback is the recourse to the q - d algorithm which might be unstable or develop 
large round-off errors. 

3. Second Variation 

In place of giving simple algebraic values to the ak (corresponding to an expansion 
in terms of simple known functions F(z), it is preferable to do that with the yk. Only 
those values of yk which allow the exact resolution of the q - d scheme will be 
considered, since the q - d scheme is the sole critical point in the above strategy. In 
Appendix A, the details of the exact resolution of the q - d algorithm are presented. 
The improved strategy runs, therefore, as follows: 

The function f(z) = co + c, z + c2 z 2 + +. . is given; s is fixed. 
The yk are chosen so that the q-d scheme is exactly calculable. 
Examples are yk = T(k + a), yk = akck-‘)“, yk = l/(k + a),... . The ak and 
b, are therefore also known exactly. 
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The polynomials Q, and P, are computed recursively through (6). The Izi 
and the o1 are deduced as indicated previously. 
One has the approximation of order s 

with F(z) = co/y,, + c,z/y, + c,z’/y, + --- . 

Our method computes stable approximations to f(z) very rapidly. Even when the 
starting expansion (1) is divergent, the algorithm remains efficient provided that the 
expansion defining F(z) is convergent. 

III. NUMERICAL EXAMPLES 

Details of the numerical algorithms used to obtain the Li and the oi are reported in 
Appendix B. 

EXAMPLE ONE: J(z) = ln(1 + z)/z. In this case we have ck = (-l)k/(k + 1). We 
choose yk = k! so that 

F(z) = (1 - exp(-z))/z. 

The final result is written as: 

f(z) = ln( 1 + z)/z 11 i Izi ’ - exny@iz), 
i=l I 

where the wi are the roots of the Laguerre polynomials and li the corresponding 
Christoffel constants [ 111. Table I presents the numerical results in two cases, z = 1 
and z = 2 (i.e., outside the circle of convergence off(z)). 

TABLE I 

Successive Approximations of the Function In(1 + z)/z; the Precision Increases with s. 

s z=l z=2 

1 0.632120558828 0.432332358381 
2 0.687464136346 0.524213272629 
3 0.692593688196 0.543742419715 
4 0.693091785341 0.548044127255 

10 0.693147180488 0.549305929851 
14 0.693147180559 0.549306143611 

ln(z + 1)/z 0.693147180559 0.549306144334 
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EXAMPLE Two: f(z) = U(a, z) (Weber-Hermite function) (a > 0). It is well 
known that the tabulation of certain transcendental functions is difficult in some 
critical domains. Two examples are the Weber function U(a, z) and the Bessel 
functions K,(z). In both cases, there exists a MacLaurin expansion valid near the 
origin and an asymptotic expansion valid when ]z] is sufficiently large. In the inter- 
mediate domain, say, 3 < z < 9, accurate computation is difficult. The case of the 
Weber function is particularly difficult [ 121. Consider the asymptotic expansion of 
the Weber function [ 131 

U(a, z> - exp(-z2/4) zPa-“* 
T(a + l/2) 

[T(u + f) - T(a + f) U2/l! t qa t ;> U4/21 + .**I, 

where u2 = 1/(2z2). Choose yk =T(k t a t f). We immediately deduce the 
remarkable result 

t&l, z) N 
exp(-z2/4) z-a-1’2 ’ 

r(a + l/2) 
C ili exp(-c$/2z2), 
i=l 

where the wi are the roots of the associated Laguerre polynomials Ly-1’2)(z), and the 
Ai are the corresponding Christoffel constants. In Table II, we see an increase in 
precision as s increases. The figures which remain stable may be considered as exact. 
A check performed with the aid of the existing tables [ 131 confirms the assertion. The 
tabulation of U(u, z) outside the range 0 <a < 2 is performed by using the well- 
known recurrence relation which connects U(u t 1), U(u), and U(u - 1) backwards 
(Miller’s algorithm [23]). 

EXAMPLE THREE: f(z) = K,(z) (Bessel function of the third kind) (v > 0). 
Working as in the second example, we start with the asymptotic expansion of K,(z) 
[131. 

K,(z) - &Zexp(-z) P- 1 1 t 82 t 01-W-9)., cu- lb-9)01-25) + ... 
2!(8z)2 3!(8~)~ I 

(with ,U = 4v2 and z large). We choose yk = T(k t v t 4) and after the calculation of 
F(z) we find another remarkable result: 

K 
" 

(z) E ~exp(-z) i A.(1 + w./2z)“-‘/2 
T(v t l/2) l ’ ’ i=l 

where the oi are the roots of the associated Laguerre polynomials Li”-“2’(z) and the 
Ai are the corresponding Christoffel constants. Exhibited in Table III is the increase 
in precision as s increases. Outside the range 0 < v Q 2, the reader may have recourse 
to the recurrence satisfied by K,(z) and to Miller’s algorithm. It should be mentioned 
that the same formula seems to be valid in the whole complex plane. That point will 
be investigated more closely in future studies. 
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FOURTH EXAMPLE: hypergeometric functions. Working as before, it is easy to 
establish the following approximations (y, = r(n + b)/T(n + c)): 

$,(a, b; c; 2) = [r(c)/T(b)] i li(l - OiZ)-O, 
i=l 

where the c.+ are the roots of the Jacobi polynomials F(-s, s + b - 1; c; z) and the li 
the corresponding Christoffel constants. Similar formulas can be written for reducing 
arbitrary ,F4 generalized hypergeometric functions. 

IV. DISCUSSION AND CONCLUSION 

This paper develops an approach to generalized Padi approximants; we exchange a 
poorly convergent series f(z) = cO + c1 z + ... for a more rapidly convergent one 
F(z)=a,+a,z+ ... , where we have 

ai = ci/yi 

yi being simple given algebraic expressions. We have shown that an orthogonal 
polynomial family Q,(s) arises naturally in the scheme. The connection with the 
classical problem of moments (20-22) then becomes obvious since it is immediately 
seen that 

yk = .’ tkw(t) dt, 
1 (I 

the density w(t) being associated with the family Q, ; 

1 -b Q,(t) Q,(t) w(t) dt = hn hn,n~ 
a 

i.e., the integral equals zero if m # n. The associated polynomials P,(z) are given by 
the formula [ 181 

P,(z) = --y,, j-1 “(‘; I;‘@) w(t) dc. 

Both Q, and P, obey the recurrence (6) 

x k+l=(Z--k)Xk-bkXk-l, 
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where the uk and the b, evolve from the yk through the q-d scheme. Its minimal 
solution is given by 

g&>lro = Q,(z) (5 YJz~+’ ) - f’,(z) - Q,(z) Wllz2s+ ‘1’ 
0 

since it is easily proved that lim,,, g,/Q, = 0. 
Another integral representation of g, is 

g,(z) = y. ja” Qs;~to dt. 

We applied the new scheme to the evaluation of certain special functions. With this 
new method 

(a) The calculations arc simple. The second and third examples of Section III 
are particularly convincing since one easily obtains surprisingly good approximations 
of functions which are well known to be difficult to evaluate in their critical domain. 

(b) The convergence is as good as with ordinary Pade approximants. 
(c) The method is stable because the q-d algorithm has been solved in an 

exact way. 
(d) The calculation may be performed at a preassigned order s without first 

performing all the calculations at the successive orders 1,2,..., s - 1. 

Many other problems remain open, properties of convergence, limits of validity of 
the method, etc. They will be investigated in future papers. 

APPENDIX A 

1. The q - d Algorithm [9] 

Starting with a sequence yo, y, ,..., yzs-,, the q - d algorithm runs as follows: 

ec)=() (n = 0, 1, 2 )...) 2s - l), 

q:n’=Yn+llYn (n = 0, 1, 2 )...) 2s - 2), 

ek 
(n) = ep_+,l’ + qp+ 1) _ qp, 

qy~“:l=ej:+l’ (n+l) 
qk le 

fl’ (k = 1, 2,..., s - 1, n = 0, l)... ). 

Then the coefficients of Eq. (6) are given by 

ak = ei”’ + 4;: 1 (k = 0, l)..., s - I), 

b, = qi”)eio) (k = 1,2 ,..., s - 1) but b, = -1. 
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2. Exact Resolution of the q - d Scheme 

For a given sequence yn, it is generally necessary to work recursively and 
numerically, since no simple expression exists for the general qr’ and ep’. 
Wynn [ 191 has presented the most general case which can be solved exactly in closed 
form 

y* = ,fJo [(A - q”+‘)l@ - 4y+‘)1. 

He has found 

q~)=qk-1(~-qY+n+k-1)(~_qa+n+k)/(~-qY+nt2k-Z)(~-qY+n+Zk-l), 

,p) = q"+k(l _ qk)(Bq" --Aqy+k-')/(B _ qy+"+2k-')(B _ qy+"+*k). 

He has also described the associated orthogonal polynomial families Q,(z) and 
P,(z). Y. L. Luke [la] has studied in great detail various important special cases: 
yn = T(n + a), l/r(n + a), ponztbn, T(n + a)/T(n + b). He has shown that the 
associated orthogonal polynomials coincide with the classical ones (respectively, 
Laguerre, Bessel, Stieltjes-Wiegert, and Jacobi). 

In each case, it can be shown that the function C 0” yk/zk + ’ can be approximated 
by Padl approximants written in closed forms. The expressions for Q,(z) and P,(z) 
have been detailed by Y. L. Luke [ 161 who has shown that frequently the exact 
values of the approximants themselves are known, rather than the continued fraction 
representations. 

Other apparently less useful examples might be considered; in fact, each family of 
orthogonal polynomials Q,(z) satisfies a recurrence of the type (6). The factors yn 
appear to be the moments of the family [ 151. In these cases, both uk and b, can be 
written in closed form, while the whole q - d scheme is not in general exactly soluble 
(i.e., qp’ and ep’ are not expressible in finite form). An extended list of convenient 
polynomials is given in [ 151. 

APPENDIX B: NUMERICAL PROCEDURE 

The numerical tables included in this paper have been prepared by following the 
strategy detailed at the end of Section 11-3. The polynomials Qk, Qr, Q:, and Pk are 
calculated recursively (k = l,..., s) with the aid of Eq. (6) and of its derivatives, i.e., 

Q k+l=(Z--ak)Qk-bkQk-l, Q 6+1=Qk+(Z-ak)Q;-bkQ;-,, 

Q'i,, = 2Ql,+(z-Uk)Q;-bkQ;-,, Pk+l=(Z--k)Pk-bkpk-l, 

with the following initial conditions: 

Q-,=P,=Ql,=Q;=Q:,=Q;=O, Q,=P-I/yo= 1. 
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The roots of Q,(z) (which are all real and distinct in the examples considered) have 
been determined by using an iterative method due to Laguerre [ 141. 

Z i+ 1 = zi - ~Q,W[QXz3 f sisn[Q,Ml @I, 
where H = (S - l)‘[Q~(z,)]’ - s(s - 1) Q,(zi) Qi(zi). This method is specially 
interesting since it is nonlocal and of cubic convergence for the simple roots (i.e., a 
few iterative steps lead to a root correct to ten significant figures, whatever initial 
value one has chosen). 
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